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Solvent effects on polymer conformation: Density-functional-theory approach

Takuji Takahashi and Toyonori Munakata*

Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan
~Received 10 April 1997!

Conformation properties of a polymer in a solvent are studied based on density-functional theory. Instead of
integrating out the solvent density field in order to reduce the whole problem to that of one polymer with
medium-induced effective interactions, we consider the solvent density profile and the polymer conformation
self-consistently on equal footing. A two-dimensional model system is considered for which some numerical
results are shown, with emphasis placed on solvents effects.@S1063-651X~97!09809-7#

PACS number~s!: 61.25.Hq
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I. INTRODUCTION

The conformation of molecules or polymers in solutio
has been one of the fundamental problems in physical ch
istry and statistical mechanics@1#. It has gathered much at
tention, especially in connection with protein folding fro
the denatured to the natured state@2#. Here the conformation
with minimum~free! energy is searched numerically for var
ous models, which can be roughly classified to a lattice an
continuous~off-lattice! ones.

Recently Iori, Marinari, and Parisi~IMP! proposed an off-
lattice chain model for protein folding@3#, whose energyE is
given by the sum of the interaction between all the pairs
the different sites of the chain:

E5(
i , j

$d i 11,j r i , j
2 1@R/r i , j

122A/r i , j
6 #1h i , j /r i , j

6 %, ~1!

with r i , j the distance between sitesi and j . The first term on
the right-hand side~rhs! of Eq. ~1! represents bonding o
neighboring pairs, and the second one is the Lennard-Jo
type interaction. Reflecting a sequence of different am
acids, the intersite potential is assumed to have a quen
random part as represented by the third term on the rh
Eq. ~1!. Hereh i , j is the random number with zero avera
and finite standard deviation. Later a two-dimensional IM
model was studied in Ref.@4#. Extensive numerical calcula
tions have revealed that the random part of the interac
plays an important role in the transition from a globular to
frozen ~folded! state@3,4#. It is noted that the IMP mode
reduces to one for a homopolymer if the random part is
glected (h i , j50), and, second, that solvent effects are n
explicitly taken into account in the IMP model.

In this paper we study solvent effects on polymer conf
mation with the aid of the density-functional theory~DFT!
@5# and its dynamic extension@6#. Instead of integrating ou
over solvent density fluctuations to obtain an effective o
polymer problem, a strategy that is often employed in th
retical studies of conformation@7#, we treat polymer confor-
mation and the solvent density fluctuations on equal footi
This approach enables us to discuss density fluctuations
duced by polymer conformation explicitly~see Sec. IV!.

*Author to whom correspondence should be addressed.
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The remainder of this paper is outlined as follows. In S
II, within the framework of the DFT@5#, we model our sys-
tem, which consists of a~hetero!polymer and a solvent. In
Sec. III, the dynamics of the system is formulated based o
dynamic DFT@6#. Section IV is devoted to numerical calcu
lations for polymer conformation in a two-dimensional sy
tem. Here we integrate the Langevin equation for polym
sites and solve the hypernetted chain~HNC!-like integral
equation for solvent density fluctuations iteratively. Secti
V contains some remarks.

II. DENSITY-FUNCTIONAL APPROACH TO POLYMER
IN SOLVENT

We consider a system in which a polymer withP sites is
put in a solvent, which we assume for simplicity to be
one-component simple liquid. Since the DFT for molecu
systems is available@8,9#, a solvent consisting of molecule
gives rise to no essential difficulties. Within the framewo
of the DFT@5#, the solvent is characterized by its free-ener
functional

F0@n0#5~kBT!E dr n0~r !$ ln@n0~r !L0
3#21%

1 1
2 E drE dr 8dn0~r !f0,0

eff~ ur2r 8u!dn0~r 8!,

~2!

wheren0(r ) denotes the density field of the solvent,kBT the
temperature in energy units, andL0 the de Broglie thermal
wavelength, and the effective potentialf0,0

eff (r) between two
solvent atoms is expressed in terms of the direct correla
function c0,0(r ) of the pure solvent as@5#

f0,0
eff~r !52kBTc0,0~r !. ~3!

We note that in Eq.~2! the excess part ofF0 is expanded
up to second order in the density fluctuatio
dn0(r )[n0(r )2n0 , with n0 the equilibrium uniform density
@5#. From the density functional~2! we can derive, with re-
course to the Percus idea of regarding the one-body distr
tion around a fixed atom as the radial distribution functi
g(r ) @8,9#, the HNC equation
4344 © 1997 The American Physical Society



o
-

e

r-

i

e

u-
-
io

if-

e

m
al
to

eal

fol-
at

q.
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lng0,0~r !5n0E dr 8c0,0~ ur2r 8u!@g0,0~r 8!21#

2f0,0~r !/~kBT!, ~4!

wheref0,0(r ) is the~bare! interaction potential between tw
solvent atoms, andc0,0(r ) is defined with the Ornstein
Zernike equation

g0,0~r !215c0,0~r !1n0E dr 8c0,0~ ur2r 8u!@g0,0~r 8!21#.

~5!

Now we introduce a polymer to our model, whose fre
energy functional is assumed to be of the form

FP@$ni%#5~kBT!(
1

P E dr ni~r !$ ln@ni~r !L i
3#21%

1 1
2 (

i , j ~ j Þ i !
E drE dr 8ni~r !f i , j

eff~ ur2r 8u!nj~r 8!,

~6!

whereni(r ) andL i are the density and the de Broglie the
mal wavelength for the sitei . Finally the polymer-solvent
interaction is represented by the free energy

F0,P5(
1

P E drE dr 8ni~r 8!f0,i
eff~ ur2r 8u!n0~r !. ~7!

From the above we consider a polymer-solvent system w
the total free energy

F5F01F0,P1FP . ~8!

The details of the model are further specified when we p
form numerical calculations in Sec. IV.

III. POLYMER-SOLVENT DYNAMICS

A. Formulation based on time-dependent DFT

From time-dependent DFT as developed in Ref.@6#, the
Langevin diffusion equation for the density fieldni(r ,t)
( i 50,1, . . . ,P) is

]ni~r ,t !/]t5Di“•@ni~r ,t !“d~F/kBT!/dni~r ,t !#2“–JR,i ,
~9!

whereJR,i andDi denote the random current and the diff
sion constant of the speciesi , respectively. The random cur
rent was shown to satisfy the fluctuation-dissipation relat

^“•JR,i~r ,t !“•JR, j~r 8,t8!&

52d i , jDi~“•“8!ni~r ,t !d~r2r 8!d~ t2t8!. ~10!

For later convenience, we explicitly write the Langevin d
fusion equation for the solvent, Eq.~11!, and the sitei
( i 51, . . . ,P), Eq. ~12!, with use of Eq.~9! and the free-
energy functional~8! for our model:
-

th

r-

n

]n0~r ,t !/]t5D0“•F“n0~r ,t !2n0~r ,t !“E dr 8

3c0,0~ ur2r 8u!dn0~r 8,t !1n0~r ,t !(
i 51

P

“E dr 8

3f0,i
eff~ ur2r 8u!ni~r 8,t !/~kBT!G2“•JR,0 ,

~11!

]ni~r ,t !/]t5Di“•F“ni~r ,t !1ni~r ,t !“E dr 8

3f0,i
eff~ ur2r 8u!dn0~r 8,t !/~kBT!

1ni~r ,t ! (
j Þ i ,1

P

“E dr 8

3f j ,i
eff~ ur2r 8u!nj~r 8,t !/~kBT!G2“•JR,i .

~12!

We note that the variational equationdF/dni(r )5m i
( i 50,1, . . . ,P) to determine the equilibrium density profil
is equivalent to the stationary condition]ni(r ,t)/]t50 in
Eq. ~9! without the random current. If we retain the rando
current however, the equilibrium distribution function
Peq@$ni(r )%# can be shown to be proportional
exp@2F/(kBT)# @6#.

The set of equations~11! and ~12! is rather complicated
for studying polymer conformation, since one has to d
with the density fieldsni(r ,t), i 51, . . . ,P instead of simple
position variables of polymer sites@2,3,4#. To facilitate dis-
cussions on the conformation problem, we introduce the
lowing localization approximation in which we assume th

ni~r ,t !5d„r2r i~ t !…, ~13!

wherer i(t), i 51, . . . ,P denotes position of the sitei at time
t. Under the approximation we have, immediately from E
~11!,

]n0~r ,t !/]t5D0“•F“n0~r ,t !2n0~r ,t !“E dr 8

3c0,0~ ur2r 8u!dn0~r 8,t !

1n0~r ,t !(
i 51

P

“f0,i
eff

„ur2r i~ t !u…/~kBT!G
2“•JR,0 . ~14!

On the other hand, the equation of motion forr i(t) is derived
by first multiplying r on both sides of Eq.~12! and integrat-
ing the resulting equation overr . Thus we have

dr i~ t !/dt5Di“ iF2E dr f0,i
eff

„ur2r i~ t !u…dn0~r ,t !/~kBT!
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FIG. 1. ConformationC(t) and the density profilen0(r ,t) for a heteropolymer with five hydrophilic (i 51 – 5) and five hydrophobic
( i 56 – 10) sites at~a! t50, ~b! 1000,~c! 2000,~d! 3000, and~e! 4000.X andY are in unit ofs0 in Eq. ~20!.
2 (
j Þ i ,1

P

f j ,i
eff

„ur i~ t !2r j~ t !u…/~kBT!G1f i~ t !. ~15!

The random force defined by
f i~ t ![E dr JR,i~r ,t ! ~16!

is easily shown from Eq.~10! to satisfy the fluctuation-
dissipation relation
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56 4347SOLVENT EFFECTS ON POLYMER CONFORMATION: . . .
^f i~ t !f j~ t8!&52Did i , jd~ t2t8!I , ~17!

whereI is thed3d unit matrix with d the dimension of the
system.

Thus we describe the solvent in terms of the density fi
whose dynamics is governed by the Langevin-diffus
equation~14!, while polymer conformation is characterize
in terms of the site position, which evolves in time accordi
to the Langevin equation~15!. It is easily confirmed from the
Fokker-Planck equation corresponding to Eqs.~14! and~15!
that the equilibrium distribution is given by

Peq@n0~r !,$r i%#5C expF H 2F02(
i , j

P

f i , j
eff~ ur i2r j u!

2(
i 51

P E dr f0,i
e f f~ ur i2r u!n0~r !J Y

3~kBT!G , ~18!

with C a normalization constant. A simpler way to confir
Eq. ~18! is to apply Eq.~13! to the equilibrium distribution
functional Peq@$ni(r )%#}exp@2F/kBT#, which appeared un
der the line of Eq.~12!.

We can sample the distribution~18! if we could solve the
coupled equations~14! and~15! for long time. However it is
noticed that to solve the Langevin diffusion equation is g
erally very difficult since the density fieldn0(r ,t) errone-
ously happens to take negative values at some placer where
the density itself can become physically very small@10#. In
our problem at hand it occurs due to~strong! repulsion near
each polymer site. So in Sec. III B we take another
closely related path to study the conformation problem.

B. Variational equation for solvent density
and Brownian dynamics for polymer

To avoid explicitly solving the Langevin-diffusion equa
tion ~14!, we consider the situation where the conformati
$r i(t)% is held fixed, and the solvent adjusts itself to t
potential field produced by the polymer. The equilibriu
density profile under the influence of the~fixed! solute poly-
mer, to be denoted asneq„r u$r i(t)%…, is obtained from the
variational principled lnPeq/dn0(r )5m ~a constant!, with
Peq given by Eq.~18!. More explicitly we obtain

neq„r u$r i~ t !%…5n0expF E dr 8c0,0~ ur2r 8u!dneq„r 8u$r i~ t !%…

2(
1

P

f0,i
eff

„ur2r i~ t !u…/~kBT!G . ~19!

This integral equation is similar in structure to the HN
equation~4!.

As for the dynamics of polymer sites, we employ Brow
ian dynamics@Eq. ~15!#, while the solvent density is deter
mined from Eq.~19!. What we have doneactually in numeri-
cal calculations is an iteration~up to 4000 times! of the
following, what we call thehybrid, step. That is, first to
d

-

t

integrate the Langevin equation~15! for some timetP with
the ~predetermined! solvent density field kept fixed~time-
independent! and then to solve the HNC-like equation~19! to
obtain the new solvent density with polymer sites held fix
at the final conformation of Brownian dynamics just me
tioned above~for initial conditions, see Sec. IV!.

IV. NUMERICAL RESULTS FOR CONFORMATION
AND SOLVENT DENSITY PROFILE

To be concrete, our solvent is taken to be the soft-c
liquid

f0,0~r !5e0~s0 /r !12, ~20!

and after IMP@3#, Eq. ~1!, f i , j
eff(r) is chosen to be

f i , j
eff~r !5eP@d i 11,j~K/2!r 2/sP

2 1$~sP /r !122A~sP /r !6%#.
~21!

Interaction~21! consists of two parts, one for bonding an
the other the Lennard-Jones-like potential. In the caseA
50, we have no mutual long-range attraction between s
and, consequently, our polymer would not collapse to
globular state if put in vacuum~without the solvent! @1,11#.
Since our main concern is around solvent effects on polym
conformation, we will consider only the caseA50 in this
paper. The solvent-polymer interactionf0,i

eff(r) is assumed to
be

f0,i
eff~r !5e0,P@~s0,P /r !122~s0,P /r !6Bi #. ~22!

We seteP ande0,P equal toe0 . As to the size of the polyme
sites we takesP52s0 ands0,P5(s01sP)/251.5s0 . K in
Eq. ~21! is set to be 1, after the choice in Ref.@4#. Hetero-
geneity in our model comes from the site-dependent cons
Bi . When Bi is positive ~negative!, site i may be called
hydrophilic ~hydrophobic! @2#. Although Bi could be a ran-
dom variable to express the quenched randomness, as foh i , j
in Eq. ~1!, we consider a definite arrangement of61 for Bi
~see below!.

In view of the heavy computational task due to the inc
sion of the solvent density profilen0(r ,t), and for the sake of
the simplicity with which one can analyze polymer confo
mations visually, we consider a two-dimensional~2D! sys-
tem @4#. Thermodynamic state of a 2D soft-disk syste
is characterized by the nondimensional constantG
[n0s2(e0 /kBT)1/6[n̄0T̄21/6 and it freezes aroundG50.96
@12#. We take rather dense solvent withG50.8 for our ex-
periments.

As units of length and energy we chooses0 ande0 @see
Eq. ~20!#, respectively. Unit of timet, which must be speci-
fied when one solves the Langevin equation~15!, is taken to
be t5s0

2/D, where the diffusion constantDi is assumed to
be site independent and equal toD. The time meshDt for
the difference scheme to solve Eq.~15! is set to be 1025t.
ThetP for one hybrid step is chosen to be 100Dt after some
trial runs, which showed that the numerical results were
sensitive totP of the order of a few tens to one hundredDt.
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Naturally if tP is chosen too small~of the order of a fewDt!,
the conformation hardly changes by one hybrid step, an
requires much more computation.

In numerically iterating the hybrid step, which is e
plained at the end of Sec. III, and is counted hereafter bt,
we must first prepare the initial condition for polymer co
formation C(t50)[$r i(t50)% and the density profile
n0(r ,t50). C(t50) is chosen to be the last conformatio
produced by simply solving Eq.~15! with no diffusion term
~or, equivalently, for the uniform solvent density field! for
some long time~e.g., for severalt! starting from a linear
conformation.n0(r ,t50) is obtained as the solution to Eq
~19! with C(t50) for r i(t50). Here in solving the integra
equation~19! we employ the meshdx/s050.2 with the cell
size 25s0325s0 . In passing we note that we always put t
center of gravitation of the polymer at the middle of the c
when we solve Eq.~19!, and the cell turns out to be larg
enough so that the density field decays to its uniform va
n0 at the boundary of the cell~see Figs. 1 and 3 below!.

In Fig. 1 we show a series of polymer conformationC(t)
and the density profilen0(r ,t) for t5 ~a! 0, ~b! 1000, ~c!
2000,~d! 3000, and~e! 4000, atT̄51.0 andn̄050.8 starting
from an arbitrarily produced~see above! initial condition
C(t50). Sites 1–5 are hydrophilic (Bi51) and the others
hydrophobic (Bi521). In the first 1000 steps the grou
consisting of hydrophilic~hydrophobic! sites is seen to ex
pand~contract!, and in the remaining time the hydrophob
sites~6, 7, and 8! are gradually swallowed by the hydrophil
sites 1–5. This is one of the most important solvent effe
which contributes to the compaction of a heteropolymer,
pecially a protein@2#. Sites 9 and 10 are observed to form
cluster, which is expected to be a metastable state with l
lifetime. The density profile is expressed here as the heigh
the direction perpendicular to thex-y plane. We note tha
detailed valuesn0(r ,t) taken by the density field are no

FIG. 2. The free energyF(t) in unit of e0 in Eq. ~20!. The
nondimensional timet denotes the number of hybrid steps.
it

l

e

s,
s-

g
in

shown to avoid complications in the figures. We observ
shell structure around polymer sites, which is a characteri
of high-density liquids. If we look at, e.g., Fig. 1~e!, we
notice that the solvent exists or intrudes in between the
drophilic sites 1–5 with the maximum density abo
n̄0(r ,t).4 around the middle of sites 3 and 4~not readable
from the figure! but for the clusters of sites 6, 7, or 8 or 9 o
10 the solvent is repelled by the clusters in conformity to
nature of the site-solvent interaction~22!. In Fig. 2 is de-
picted the variation of the free energy of system~8! with
time t, which is actually reduced to2kBT lnPeq, Eq. ~18!,
under the localization approximation~13!. Although we ob-
serve overall decrease of the free energy in time, it does
monotonically decrease since we allow for the random fo
in Eq. ~15! @6#.

In Fig. 3 we show results forC(t) and the density profile
n0(r ,t) for ~a! t51000,~b! 2000,~c! 3000, and~d! 4000, in
the case when sites 1–5 are hydrophobic (Bi521) and
the others hydrophilic (Bi51). The initial conformation
C(t 50) andT andn0 are the same as the ones in Fig. 1~a!,
but the density profile is of course different from that in Fi
1~a!. We observe as before that the early response~up to t
51000! of the polymer to the solvent is characterized by t
general tendency to shrinkage~swelling! of the group of hy-
drophobic~hydrophilic! sites. Site 7 is seen to move towa
the cluster of the hydrophobic sites 1 and 2, and the clu
of sites 1, 2, and 7 seems to be rather stable in the pres
of the solvent. Similarly two hydrophobic sites~4 and 5! and
one hydrophilic site~6! are seen to form a rather stable clu
ter. From this observation together with the encircling by t
hydrophilic sites of the hydrophobic sites as shown in Fig
one may broadly note that the main effect of the solvent is
make polymer conformation compact by producing vario
kinds of clusters. However, a more elaborate numerical st
seems necessary before we can draw conclusions defini

Before leaving this section we comment on our expe
ment in which we lower temperature fromT̄51.0 to 0.5 to
see possible temperature effects. Since the intersite pote
~21! has no mutual attraction (A50), we observed no con
spicuous change, such as the rapid collapse phenom
@11#, compared with the results forT̄51.0.

V. SOME REMARKS

In this paper we proposed an~semidynamical! approach
for studying solvent effects on polymer conformation bas
on a dynamic DFT@6#, and applied it to a simple 2D het
eropolymer problem. At present our program enables us
deal with a polymer with up toP515 sites. Of course this
depends on the density or more preciselyG of the solvent.
WhenG is large, the density profiledn0(r ) does not decay to
zero rapidly asr moves off from the center of the polyme
but oscillates, as is shown in Figs. 1 and 3. In this case
need a large solvent cell to immerse the polymer in. In c
of a low-G solvent this does not happen, and we can d
with a polymer with more sites.

Although our approach based on either Eqs.~14! or ~15!
or ~19! or ~15! can give useful information on polymer
solvent dynamics and on solvent density fluctuations indu
by polymer conformation, it mainly focuses on samplin
polymer conformation according to the distribution functio
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FIG. 3. ConformationC(t) and the density profilen0(r ,t) for a heteropolymer with five hydrophobic (i 51 – 5) and five hydrophilic
( i 56 – 10) sites at~a! t51000,~b! 2000,~c! 3000, and~d! 4000.X andY are in units ofs0 in Eq. ~20!. The conformationC(t50) is the
same as the one shown by Fig. 1~a!.
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~18!. So if one could functionally integrate Eq.~18! over
solvent density fluctuations, the whole problem would
reduced to that of one polymer with extra medium-induc
interaction. It is to be noted, however, that at present
have no systematic functional integration scheme for
~18!, which would be able to afford a sound starting point
investigate polymer conformation. This is due to the pr
ence of the logarithmic term~free gas contribution! in the
free energyF0 , Eq. ~2!. If we employ the Gaussian approx
mation @7#, the first term on the rhs of Eq.~2! becomes
(kBT/2n0)*dr @dn0(r )#2, and after functional integration
over n0(r ) we have Peq($r i%)5C exp@2(i,j$fi,j

eff(ur i2r j u)
1f i , j

solv(ur i2r j u)%/(kBT)#, where the Fourier transform o
the solvent-induced interactionf i , j

solv(r ) is given by the prod-
uct of the static structure factorS(k) of the pure solvent and
the effective potentialf0,i

eff(k) andf0,j
eff(k) @7#. Under this ap-

proximation the interaction between, say, sitesi and j is
e
d
e
.

-

independent of polymer conformation, which means that t
sites located deep in the polymer and not exposed to sol
interact with each other in the same manner as the two s
on the surface of the polymer when it is folded. In contra
the Langevin equation~15! clearly shows that if a site is
inside a polymer thus shielded from a solvent, it receives
direct effects from the solvent. However, by treating solve
and polymer on equal footing, we had the numerically hea
task of solving the HNC-like nonlinear integral equatio
~19!. Of course it is possible to go beyond the Gauss
approximation by including more than two-body-induced
teraction, and further theoretical and numerical studies se
to be necessary for a comparison of the two approaches
effective medium one and ours, to solvent effects on polym
conformation.

Our final comments are concerned with possible ext
sions of our approach to more realistic situations. First
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solvent, which is usually composed of water, should b
molecular liquid with electrostatic and dynamic effects. O
DFT approach is expected to overcome this barrier, at le
with respect to electrostatic effects, in view of the DFT ava
able for molecular liquids@8,13#. If we want to deal with a
polymer with largeP ~number of sites! in a 3D solvent, we
must prepare a large cell~container! of solvent whose den
sity is nearly constant (5n0) around the edge thereof, an
this of course requires considerable computer memor
However, in solving Eq.~19! to follow the time evolution of
the density profile, we can change the size and shape o
s
nn

.

a
r
st
-

s.

he

solvent cell according to the polymer conformation. Th
would contribute to a reduction of computer memories, a
may be considered one merit of our semidynamic approa
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