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Solvent effects on polymer conformation: Density-functional-theory approach
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Conformation properties of a polymer in a solvent are studied based on density-functional theory. Instead of
integrating out the solvent density field in order to reduce the whole problem to that of one polymer with
medium-induced effective interactions, we consider the solvent density profile and the polymer conformation
self-consistently on equal footing. A two-dimensional model system is considered for which some numerical
results are shown, with emphasis placed on solvents eff&&1963-651X97)09809-7

PACS numbes): 61.25.Hq

[. INTRODUCTION The remainder of this paper is outlined as follows. In Sec.
I, within the framework of the DFT5], we model our sys-
The conformation of molecules or polymers in solutionstem, which consists of ghetergpolymer and a solvent. In
has been one of the fundamental problems in physical chen$ec. Ill, the dynamics of the system is formulated based on a
istry and statistical mechani¢4]. It has gathered much at- dynamic DFT[6]. Section IV is devoted to numerical calcu-
tention, especially in connection with protein folding from lations for polymer conformation in a two-dimensional sys-
the denatured to the natured stf2¢ Here the conformation tem. Here we integrate the Langevin equation for polymer
with minimum (free) energy is searched numerically for vari- sites and solve the hypernetted ch&HNC)-like integral
ous models, which can be roughly classified to a lattice and equation for solvent density fluctuations iteratively. Section

continuous(off-lattice) ones. V contains some remarks.

Recently lori, Marinari, and Pari$iMP) proposed an off-
lattice chain model for protein folding], whose energi is | 1engITY.FUNCTIONAL APPROACH TO POLYMER
given by the sum of the interaction between all the pairs of IN SOLVENT

the different sites of the chain:

We consider a system in which a polymer wRkhsites is
put in a solvent, which we assume for simplicity to be a
one-component simple liquid. Since the DFT for molecular
systems is availablg8,9], a solvent consisting of molecules
with r; ; the distance between sitesindj. The first term on  gives rise to no essential difficulties. Within the framework
the right-hand sidgrhs) of Eq. (1) represents bonding of of the DFT[5], the solvent is characterized by its free-energy
neighboring pairs, and the second one is the Lennard-Jone&nctional
type interaction. Reflecting a sequence of different amino
acids, the intersite potential is assumed to have a quenched 3
random part as represented by the third term on the rhs of Fo[”o]:(kBT)J dr ng(r){In[ng(r)Agl—1}

Eq. (1). Here 7 ; is the random number with zero average
and finite standard deviation. Later a two-dimensional IMP 1 , off , ,
model was studied in Ref4]. Extensive numerical calcula- +§f drf dr” dno(r) oo |r =) Sno(r”),
tions have revealed that the random part of the interaction %)
plays an important role in the transition from a globular to a

frozen (folded state[3,4]. It is noted that the IMP model -
reduce(s to o?’n)e for a[ ho]mopolymer if the random part is ne\_/vhereno(r) denotes the density field of the solvekisT the

glected (7 ;=0), and, second, that solvent effects are noteMperature in energy un|t§, ard, thg dffe Broglie thermal
explicitly taken into account in the IMP model. wavelength, and the effective potentkag'o(r) between two
In this paper we study solvent effects on polymer confor-Solvent atoms is expressed in terms of the direct correlation

mation with the aid of the density-functional theoi@FT)  functionco(r) of the pure solvent a5]

[5] and its dynamic extensidif]. Instead of integrating out .

over solvent density fluctuations to obtain an effective one- 0.0F)=—kgTcodr). (3

polymer problem, a strategy that is often employed in theo-

retical studies of conformatiofv], we treat polymer confor- We note that in Eq(2) the excess part of, is expanded

mation and the solvent density fluctuations on equal footingup to second order in the density fluctuations

This approach enables us to discuss density fluctuations insny(r)=nq(r) —ng, with ny the equilibrium uniform density

duced by polymer conformation explicitlgee Sec. IV. [5]. From the density functiondR) we can derive, with re-
course to the Percus idea of regarding the one-body distribu-
tion around a fixed atom as the radial distribution function

* Author to whom correspondence should be addressed. g(r) [8,9], the HNC equation

E=i2<j {84y 2+ [RIFZ=AIE N+ 5102}, (D)
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|ngo,o(r):nof dr'coo|r—r')[godr")—1]
— dodr)/(KsT), )
where g o(r) is the(bare interaction potential between two

solvent atoms, andy(r) is defined with the Ornstein-
Zernike equation

go,o(r)—lzco,o(r)+nof dr'coo|r—r'Dgoor’)—1].
5

Now we introduce a polymer to our model, whose free-
energy functional is assumed to be of the form

P
Felindl=(kaDS | dr o) finin(na1-1)

+3 > fdrfdr'ni(rw?f{(lr—r'|>nj<r'>,
Li(#D) '
(6)
wheren;(r) andA; are the density and the de Broglie ther-

mal wavelength for the site. Finally the polymer-solvent
interaction is represented by the free energy

P
Fo,p=§ fdrfdr'm(r') Mr—r"Phng(r). (@)
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dang(r,t)/dt=DyV - Vno(r,t)—no(r,t)VJdr’
P
X Cod|r—r')8ng(r’,t)+ng(r,t) >, Vf dr’
i=1

><¢8Tif(|r—r/|)ni(r',t)/(kBT)}_V"]R’O'

(13)
&ni(r,t)/at:DiV.{Vni(r,t)+ni(r,t)vf dr’
X oi(|r—=r"])8no(r' 1)/ (kgT)
P
+ni(r,t) VJdr’
j#i,1
Xd’ifif(“_rl|)nj(r,:t)/(kBT)}_V'JR,i-
(12

We note that the variational equatiodF/on;(r)= w;
(i=0,1, ... P) to determine the equilibrium density profile
is equivalent to the stationary conditiam;(r,t)/dgt=0 in
Eq. (9) without the random current. If we retain the random
current however, the equilibrium distribution functional
Ped{ni(r)}] can be shown to be proportional to

From the above we consider a polymer-solvent system witi§XH —F/(ksT)] [6].

the total free energy

F:F0+FO,P+FP' (8)

The details of the model are further specified when we per
form numerical calculations in Sec. IV.

lll. POLYMER-SOLVENT DYNAMICS
A. Formulation based on time-dependent DFT

From time-dependent DFT as developed in Réf, the
Langevin diffusion equation for the density fielg(r,t)
(i=0,1,...P)is

ani(r,0)1at=D;V -[n(r,t) V 8(F/kgT)/ oni(r,1)]— V -Jg;i,
)

whereJg; and D; denote the random current and the diffu-
sion constant of the speciesrespectively. The random cur-

rent was shown to satisfy the fluctuation-dissipation relation

(V-Jri(r,)V-Jg i(r',t"))

=25,;Di(V-V)ni(r,n)d(r—r")s(t—t'). (10
For later convenience, we explicitly write the Langevin dif-
fusion equation for the solvent, Eq11), and the sitei
(i=1,...,P), Eq.(12), with use of Eq.(9) and the free-
energy functional8) for our model:

The set of equation&ll) and (12) is rather complicated
for studying polymer conformation, since one has to deal
with the density fields(r,t), i=1, ... P instead of simple
position variables of polymer sitd&,3,4]. To facilitate dis-
cussions on the conformation problem, we introduce the fol-
lowing localization approximation in which we assume that

ni(r,t)=o(r —ri(t)), (13
wherer;(t), i=1, ... P denotes position of the siteat time

t. Under the approximation we have, immediately from Eq.
1),

ang(r,t)/gt=DyV - Vno(r,t)—no(r,t)Vfdr’

XCol|r=r')dng(r’,t)

P
+no<r,t>i=21 Vo&(r—ri(H)])/ (ksT)

—V-Jro- (19

On the other hand, the equation of motion fdt) is derived
by first multiplyingr on both sides of Eq12) and integrat-
ing the resulting equation over Thus we have

dri(t)/dt:DiVi

—f dr ¢g;(|r—ri(t))ng(r,)/(ksT)
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FIG. 1. ConformationC(t) and the density profiley(r,t) for a heteropolymer with five hydrophilid € 1-5) and five hydrophobic
(i=6-10) sites ata) t=0, (b) 1000, (c) 2000, (d) 3000, and(e) 4000.X andY are in unit ofog in EQ. (20).
P
= 2 (rO—ri(OD/(keT) | +Fi(1). (15 fi(t)Ef drJg,(r,t) (16)
j#i,l

is easily shown from Eq(10) to satisfy the fluctuation-
The random force defined by dissipation relation
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(Fi(OF(t"))=2D; 8 jo(t—t")I, (17) integrate the Langevin equati@h5) for some timerp with
the (predetermined solvent density field kept fixedtime-
wherel is thed X d unit matrix withd the dimension of the independerjtand then to solve the HNC-like equati@]:g) to
system. obtain the new solvent density with polymer sites held fixed
Thus we describe the solvent in terms of the density fieldat the final conformation of Brownian dynamics just men-
whose dynamics is governed by the Langevin-diffusiontioned abovefor initial conditions, see Sec. IV
equation(14), while polymer conformation is characterized
in terms of the site position, which evolves in time according |, NUMERICAL RESULTS FOR CONFORMATION
to the Langevin equatiofl5). It is easily confirmed from the AND SOLVENT DENSITY PROFILE
Fokker-Planck equation corresponding to Ed<l) and(15)

that the equilibrium distribution is given by To be concrete, our solvent is taken to be the soft-core

liquid
=]
1= B - eff . —r.
PedMoln) Arid1=C epo Fom 2 #r=niD Bodr)=eo00/N) (20)
P .
and after IMP[3], Eq. (1), ¢¢(r) is chosen to be
—izl dr ¢8,fif(|ri_r|)no(f)]/ 3], Ea. ). #7(0)
ie’fjf(l’)zEp[5i+1’j(K/2)r2/0'§,+{(0'p/r)IZ—A(UP/I’)6}(].
21

X(kBT)} (18)
Interaction(21) consists of two parts, one for bonding and

with C a normalization constant. A simpler way to confirm t_he other the Lennard-Jones-like potentla_l. In the CASET

Eq. (18) is to apply Eq.(13) to the equilibrium distribution =0, we have no mutual long-range attraction between sites

functional P _ —F/k;T], which d un- and, consequt_antly, our polymgr would not collapse to a
duer:ct;loenﬁtneec,#{ga((rig.ocexq keT], which appeared un globular state if put in vacuurtwithout the solvent[1,11].

We can sample the distributida8) if we could solve the Since our main concern is around solvent effects on polymer

coupled equationél4) and (15) for long time. However itis conformation, we will consider only the cage=0 in this
noticed that to solve the Langevin diffusion equation is genPaper. The solvent-polymer interactiet;(r) is assumed to
erally very difficult since the density fieldy(r,t) errone- be
ously happens to take negative values at some pladeere
the density itself can become physically very snja]. In
our problem at hand it occurs due (strong repulsion near $5i(1)=€opl (0p /1) ?= (a0p/T)°By]. (22)
each polymer site. So in Sec. Il B we take another but
closely related path to study the conformation problem.  We setep andegp equal toey. As to the size of the polymer
sites we takerp=20g andogp=(0¢+ op)/2=1.50¢. K in
B. Variational equation for solvent density Eqg. (21) is set to be 1, after the choice in R¢#]. Hetero-
and Brownian dynamics for polymer geneity in our model comes from the site-dependent constant
To avoid explicitly solving the Langevin-diffusion equa- Bi- WhenB; is positive (negative, site i may be called
tion (14), we consider the situation where the conformationhydrophilic (hydrophobig [2]. AlthoughB; could be a ran-
{ri(t)} is held fixed, and the solvent adjusts itself to thedom variable to express the quenched randomness, a for
potential field produced by the polymer. The equilibriumin Eg. (1), we consider a definite arrangement-ofl. for B;
density profile under the influence of tifixed) solute poly-  (see below.

mer, to be denoted aseq(rHri(t)}), is obtained from the ' In view of the hea.Vy .Compu.tational task due to the inclu-
variational principles InPey/ dno(r)=pu (a constant with  Sion of the solvent density profite(r,t), and for the sake of
Peq given by Eq.(18). More explicitly we obtain the simplicity with which one can analyze polymer confor-

mations visually, we consider a two-dimensioi2D) sys-
tem [4]. Thermodynamic state of a 2D soft-disk system

is characterized by the nondimensional constalit
Ned(r [{ri(1)})=noex f dr’cool|r—r"]) dneq(r'[{ri(t)}) =ngo?(eo/kgT)Ye=n,T 6 and it freezes arountl=0.96
[12]. We take rather dense solvent wikh=0.8 for our ex-
P periments.
—21 ¢8§f(|r_ri(t)|)/(kBT):|- (19 As units of length and energy we choosg and ¢, [see

Eqg. (20)], respectively. Unit of timer, which must be speci-

This integral equation is similar in structure to the HNC fied when one solves the Langevin equatitb), is taken to

equation(4). be r=¢2/D, where the diffusion constam; is assumed to
As for the dynamics of polymer sites, we employ Brown- be site independent and equal@o The time mesht for

ian dynamic§Eq. (15)], while the solvent density is deter- the difference scheme to solve Eg5) is set to be 10°7.

mined from Eq(19). What we have donactuallyin numeri-  The 7p for one hybrid step is chosen to be MiCafter some

cal calculations is an iteratiofup to 4000 times of the  trial runs, which showed that the numerical results were not

following, what we call thehybrid, step. That is, first to sensitive torp of the order of a few tens to one hundrad.
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360 , , . , , , , shown to avoid complications in the figures. We observe a
shell structure around polymer sites, which is a characteristic
of high-density liquids. If we look at, e.g., Fig.(&, we

355 7 notice that the solvent exists or intrudes in between the hy-
drophilic sites 1-5 with the maximum density about
aso | i no(r,t)=4 around the middle of sites 3 and(dot readable

from the figure but for the clusters of sites 6, 7, or 8 or 9 or

“ | 10 the solvent is repelled by the clusters in conformity to the

345 | . nature of the site-solvent interactig@?). In Fig. 2 is de-

w I R T picted the variation of the free energy of syst¢& with

Lt time t, which is actually reduced te-kgT InPgq, Eq. (18),

‘ under the localization approximatidf3). Although we ob-

N W il i1 ! serve overall decrease of the free energy in time, it does not

335 - | i ! “‘ Il monotonically decrease since we allow for the random force
| ‘ 1 L in Eqg. (15) [6].

! In Fig. 3 we show results fo€(t) and the density profile
nqy(r,t) for (a) t=1000,(b) 2000,(c) 3000, andd) 4000, in
the case when sites 1-5 are hydrophol;=—1) and

B w0 30 000 the others hydrophilic B;=1). The initial conformation
1 C(t =0) andT andng are the same as the ones in Figp)1
but the density profile is of course different from that in Fig.

FIG. 2. The free energf(t) in unit of €, in Eq. (20). The  1(8). We observe as before that the early respduogeto t
nondimensional timé¢ denotes the number of hybrid steps. =1000 of the polymer to the solvent is characterized by the

general tendency to shrinkagewelling of the group of hy-

drophobic(hydrophilig sites. Site 7 is seen to move toward

the cluster of the hydrophobic sites 1 and 2, and the cluster
Naturally if 7 is chosen too smalbf the order of a fewAt),  of sites 1, 2, and 7 seems to be rather stable in the presence
the conformation hardly changes by one hybrid step, and iof the solvent. Similarly two hydrophobic sité$ and 5 and
requires much more computation. one hydrophilic sit€6) are seen to form a rather stable clus-

In numerically iterating the hybrid step, which is ex- ter. From this observation together with the encircling by the
plained at the end of Sec. lll, and is counted hereaftet,by hydrophilic sites of the hydrophobic sites as shown in Fig. 1,
we must first prepare the initial condition for polymer con- one may broadly note that the main effect of the solvent is to
formation C(t=0)={r;(t=0)} and the density profile make polymer conformation compact by producing various
no(r,t=0). C(t=0) is chosen to be the last conformation kinds of clusters. However, a more elaborate numerical study
produced by simply solving Eq15) with no diffusion term  seems necessary before we can draw conclusions definitely.
(or, equivalently, for the uniform solvent density figlfbr Before leaving this section we comment on our experi-
some long time(e.g., for several) starting from a linear ment in which we lower temperature frof=1.0 to 0.5 to
conformation.ny(r,t=0) is obtained as the solution to Eq. see possible temperature effects. Since the intersite potential
(19) with C(t=0) for r;(t=0). Here in solving the integral (21) has no mutual attractionA=0), we observed no con-
equation(19) we employ the meslix/oy=0.2 with the cell  spicuous change, such as the rapid collapse phenomenon
size 257X 250. In passing we note that we always put the[11], compared with the results far=1.0.
center of gravitation of the polymer at the middle of the cell
when we solve Eq(19), and the cell turns out to be large
enough so that the density field decays to its uniform value
no at the boundary of the cefsee Figs. 1 and 3 belgw In this paper we proposed @semidynamical approach

In Fig. 1 we show a series of polymer conformatio(t)  for studying solvent effects on polymer conformation based
and the density profile(r,t) for t= (a) 0, (b) 1000,(c)  on a dynamic DFT[6], and applied it to a simple 2D het-
2000, (d) 3000, ande) 4000, atT=1.0 andn,= 0.8 starting  eropolymer problem. At present our program enables us to
from an arbitrarily producedsee abovginitial condition  deal with a polymer with up td®=15 sites. Of course this
C(t=0). Sites 1-5 are hydrophilicB(=1) and the others depends on the density or more precisElpf the solvent.
hydrophobic B;=—1). In the first 1000 steps the group WhenI is large, the density profilény(r) does not decay to
consisting of hydrophilighydrophobi¢ sites is seen to ex- zero rapidly ag moves off from the center of the polymer
pand (contracj, and in the remaining time the hydrophobic but oscillates, as is shown in Figs. 1 and 3. In this case we
sites(6, 7, and 8 are gradually swallowed by the hydrophilic need a large solvent cell to immerse the polymer in. In case
sites 1-5. This is one of the most important solvent effectsof a low-I" solvent this does not happen, and we can deal
which contributes to the compaction of a heteropolymer, eswith a polymer with more sites.
pecially a proteir{2]. Sites 9 and 10 are observed to form a  Although our approach based on either E4<l) or (15)
cluster, which is expected to be a metastable state with longr (19) or (15 can give useful information on polymer-
lifetime. The density profile is expressed here as the height isolvent dynamics and on solvent density fluctuations induced
the direction perpendicular to they plane. We note that by polymer conformation, it mainly focuses on sampling
detailed valuesmy(r,t) taken by the density field are not polymer conformation according to the distribution function

340 - M ] |

V. SOME REMARKS
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FIG. 3. ConformationC(t) and the density profiley(r,t) for a heteropolymer with five hydrophobié<€1—-5) and five hydrophilic
(i=6-10) sites ata) t=1000,(b) 2000, (c) 3000, andd) 4000.X andY are in units ofoy in Eq. (20). The conformatiorC(t=0) is the
same as the one shown by Fida)l

(18). So if one could functionally integrate Eq18) over independent of polymer conformation, which means that two
solvent density fluctuations, the whole problem would besites located deep in the polymer and not exposed to solvent
reduced to that of one polymer with extra medium-inducednteract with each other in the same manner as the two sites
interaction. It is to be noted, however, that at present wexn the surface of the polymer when it is folded. In contrast
have no systematic functional integration scheme for Edthe Langevin equatioril5) clearly shows that if a site is
(18), which would be able to afford a sound starting point tojnside a polymer thus shielded from a solvent, it receives no
investigate polymer conformation. This is due to the presqjrect effects from the solvent. However, by treating solvent
ence of the logarithmic ternffree gas contrlbu'_uohln the ~and polymer on equal footing, we had the numerically heavy
free energyFo, Eq. (2). If we employ the Gaussian approxi- taqk of solving the HNC-like nonlinear integral equation
mation [7], the first t(zarm on the rhs Of.EqZ) _becom(_as (19). Of course it is possible to go beyond the Gaussian
(kgT/2no) fdr[8ng(r)]° and after functional Jntegration - approximation by including more than two-body-induced in-
over no(r) we havePed{ri})=C exd—Zi<{¢7j(I"— 1) teraction, and further theoretical and numerical studies seem
+¢M(|ri—ri))}/(kT)], where the Fourier transform of o be necessary for a comparison of the two approaches, an
the solvent-induced interactiaf$"(r) is given by the prod-  effective medium one and ours, to solvent effects on polymer
uct of the static structure fact@(k) of the pure solvent and conformation.

the effective potentia&ﬁgﬂf(k) and ¢8fjf(k) [7]. Under this ap- Our final comments are concerned with possible exten-
proximation the interaction between, say, siteand j is  sions of our approach to more realistic situations. First the
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solvent, which is usually composed of water, should be aolvent cell according to the polymer conformation. This
molecular liquid with electrostatic and dynamic effects. Ourwould contribute to a reduction of computer memories, and

DFT approach is expected to overcome this barrier, at leaghay be considered one merit of our semidynamic approach.
with respect to electrostatic effects, in view of the DFT avail-

able for molecular liquid$8,13]. If we want to deal with a
polymer with largeP (number of sitesin a 3D solvent, we
must prepare a large cdltontainef of solvent whose den-
sity is nearly constant=£n,) around the edge thereof, and  We are grateful to Professor F. Hirata for many helpful
this of course requires considerable computer memorieomments and discussions. This work was supported in part
However, in solving Eq(19) to follow the time evolution of by Grants-in-Aid for Scientific Research from the Japanese
the density profile, we can change the size and shape of tHdinistry of Education, Science, and Culture.
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